Numerical Simulation of the Motion of a Drop in Plane Poiseuille Flow: Density Ratio Effects
نویسنده
چکیده
Morteza Bayareh Department of Mechanical Engineering, Young researchers Club, Lamerd Branch, Islamic Azad University, Lamerd, Iran Abstract The density ratio effects on the motion of a three-dimensional drop in Poiseuille flow are examined at finite Reynolds numbers using a finite difference front tracking method. The elliptic pressure equation is solved by a multi-grid method. For deformable drops, the wall repulsion increases and this effect moves the equilibrium position closer to the centerline of the channel. Results show that all drops with deferent density ratios migrate to an equilibrium position about halfway between the centerline and the wall. The drops move to an equilibrium position closer to the wall with increasing the density ratio. The axial velocities of the drops increase with decreasing the density ratio, because the drop with smaller density ratio moves to a lower final position. Also, the deformation of the drops is the same after an initial transient period. During the initial transient period, the deformation increases as the density ratio increases.
منابع مشابه
A Numerical Study of Drop Motion in Poiseuille Flow
The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channe while for t...
متن کاملA Numerical Study of Drop Motion in Poiseuille Flow
The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channe while for t...
متن کاملEffects of different atomistic water models on the velocity profile and density number of Poiseuille flow in a nano-channel: Molecular Dynamic Simulation
In the current study, five different atomistic water models (AWMs) are implemented, In order to investigate the impact of AWMs treatment on the water velocity profile and density number. For this purpose, Molecular dynamics simulation (MDS) of Poiseuille flow in a nano-channel is conducted. Considered AWMs are SPC/E, TIP3P, TIP4P, TIP4PFQ and TIP5P. To assessment of the ability of each model in...
متن کاملNon-Equilibruim Molecular Dynamics Simulation of Poiseuille Flow in a Nanochannel
The numerical simulation of a Poiseuille flow in a narrow channel using the molecular dynamics simulation (MDS) is performed. Poiseuille flow of liquid Argon in a nanochannel is simulated by embedding the fluid particles in a uniform force field. Density, velocity and Temperature profiles across the channel are investigated. When particles will be inserted into the flow, it is expected that the...
متن کاملSequential Implicit Numerical Scheme for Pollutant and Heat Transport in a Plane-Poiseuille Flow
A sequential implicit numerical scheme is proposed for a system of partial differential equations defining the transport of heat and mass in the channel flow of a variable-viscosity fluid. By adopting the backward difference scheme for time derivative and the central difference scheme for the spatial derivatives, an implicit finite difference scheme is formulated. The variable-coefficient diffu...
متن کامل